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We compute the moment equations for a granular material under the simplify-
ing assumption of pseudo-Maxwellian particles approximating dissipative hard
spheres. We obtain the general moment equations of second and third order and
the isotropic moment equations of any order. Our equations describe, in the
space homogeneous case, the granular system described by a Boltzmann-like
collision term and subject to a Brownian motion due to the interaction with a
bath, described by a Fokker–Planck term. The trend to equilibrium is studied in
detail.
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1. INTRODUCTION

In the last few years a notable development of the study of the mechanics
of granular materials has occurred, because of their growing importance in
the applications (sands, powders, rock and snow avalanches, landslides,
grains, fluidized beds). The problems related to the study of fast flows of
grain materials, which arise, more and more frequently, in industrial pro-
cesses and are of growing importance in the study of natural phenomena,
have been the object of much attention and have been treated with various
methods that differ in rigor and complexity. In the majority of these studies
one adopts the assumption of one-dimensional flow and neglects the
interaction between grains and air. The various methods applied to these
simplified problems have also been used to model other important cases of



collisional granular motion, including fluidized beds. The methods used in
these studies include: (i) development of physical and experimental models;
(ii) computer simulations; (iii) kinetic theory.

Actually many recent studies are based on the assumption that, in
certain conditions of motion, collisions between particles supply the main
mechanism of momentum and energy exchange. This assumption sponta-
neously suggests an analogy with the kinetic theory of gases. In this theory
the particles are of course molecules and there are thus essential differences
between the two situations, which must be duly taken into account. In
particular, the intermolecular collisions are frequently elastic, whereas this
is not a reasonable assumption when dealing with particles of a granular
material.

In this paper, we continue the study of the behavior of large systems of
inelastic particles on the basis of approximate kinetic equations, proposed
in refs. 3 and 4. We consider pseudo-Maxwellian particles approximating
dissipative hard spheres, with the aim of studying the equations satisfied by
the isotropic moments of the distribution function. Our equations describe,
in the space homogeneous case, the system of the aforementioned particles
undergoing interparticle inelastic collisions, described by a Boltzmann-like
collision term and subject to a Brownian motion due to the interaction with
a bath, described by a Fokker–Planck term, as suggested by some recent
simulations. (1, 6)

We also mention some recent papers (7, 8) devoted to mainly numerical
studies of pair correlations in a one-dimensional model of inelastically
interacting point particles excited by a white noise (diffusion in velocity
space). Despite many interesting features (7, 8) of one-dimensional models, it
is typical in statistical mechanics that these models differ even qualitatively
from multidimensional ones. For example, the mean free path of the par-
ticle is independent on its diameter in 1d, whereas point particles have no
collisions at all in 3d. Our goal in this paper is to study in detail the one-
particle distribution function f(v) in velocity space for a more realistic
three-dimensional model of inelastic particles in a thermal bath.

We remark that the exact formulas for moments of the collision
integral obtained in this paper can be used in many problems. They were
already applied (without giving details) by one of the authors (C.C.) to the
shear flow of granular materials. (9)

The paper is organized as follows. In Section 2 we recall our basic
equations, and perform a Fourier transform of the kinetic equation. In
Section 3 we derive exact equations for all tensor moments of order n [ 3.
Then we concentrate in Section 4 on isotropic solutions and derive exact
equations for moments of arbitrarily high order. Then we show that these
moments tend to certain values (the moments of a stationary solution) as
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tQ.. Next we derive exact recurrence formulas for the steady state
moments and prove that they correspond to a uniquely defined stationary
solution of the Fourier transformed equation. We study in Section 5 in
more detail the case when the Fokker–Planck term does not include
friction. It is proved that the solution constructed in Section 4 is the
Fourier transform of a classical nonnegative solution of our kinetic equa-
tion (a uniqueness theorem is also established). At the end of Section 5, we
discuss some properties of the solution f(|v|). It is proved that the function
f(|v| exp(−a|v|)) > 0 is not integrable for some a > 0. It is therefore
assumed that |v|−1 log f(|v|)Q a as |v|Q., and then constructed, at a
formal level, the leading asymptotic term of f(|v|) for large |v|. It is also
shown that a small inelasticity expansion (4) can be easily obtained via the
Fourier transform. The main results of the paper are formulated in
Theorems 3.1, 4.1, 4.2, 5.1.

2. THE KINETIC EQUATION AND ITS FOURIER REPRESENTATION

Let f(v, t) be a distribution function (here v ¥ R3 and t ¥ R+ denote
the velocity and time variables, respectively) of a spatially homogeneous
system of inelastic particles. Following refs. 3 and 4 we describe the system
by the pseudo-Maxwellian kinetic equation

“f
“t
=B(r, t) Q(f, f)+LFPf (2.1)

where the first term in the right-hand side corresponds to inelastic colli-
sions between particles, whereas the second term is responsible for the
interaction of particles with a thermal bath. The explicit form of the first
term is given by the following formulas which correct the strong form of
the pseudo-Maxwellian collision integral given in ref. 3:

Q(f, f)=
1
4p

F
R

3
F
S2
[f(t, vg) f(t, wg) J−f(t, v) f(t, w)] dn dw (2.2)

where vg, wg are the pre-collisional velocities associated to the collision
mechanism

vg=
1
2
(v+w)−

1−e
4e

(v−w)+
1+e
4e

|v−w| n

wg=
1
2
(v+w)+

1−e
4e

(v−w)−
1+e
4e

|v−w| n.

(2.3)
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and J is the Jacobian of the transformation:

J=
1
e2

|v−w|
|vg−wg |

(2.4)

Here 0 < e [ 1 is the restitution coefficient (e=1 for elastic collisions).
Then the weak form of the collision integral coincides with the weak

form given in ref. 3:

F dv g(v) Q(f, f)

=
1
8p

F
R

3
F
R

3
F
S2
f(t, v) f(t, w)[g(vŒ)+g(wŒ)−g(v)−g(w)] dv dn dw,

(2.5)

where g(v) is a test function and vŒ, wŒ are post-collisional velocities given
by

vŒ=
1
2
(v+w)+

1−e
4
(v−w)+

1+e
4
|v−w| n

wŒ=
1
2
(v+w)−

1−e
4
(v−w)−

1+e
4
|v−w| n.

(2.6)

We denote

r=F
R

3
f(v, t) dv, ru=F

R
3
vf(v, t) dv, 3rh=F

R
3
|v−u|2 f(v, t) dv

(2.7)

where r ¥ R+, u ¥ R3, and h ¥ R+ are the density, bulk velocity and tem-
perature of the granular material. Then

B(r, t)=B(r)`h(t) (2.8)

where B(r) is a given positive function of the density r (see refs. 3 and 4
for details). This function is irrelevant for our goals since our model pre-
serves the total number of particles (r=const.).

Interaction with the bath can be described by one of the following
Fokker–Planck terms:

L (1)
FPf=FDvf, L (2)

FPf=
1
y

divv((v−u) f+hbNvf). (2.9)
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that were proposed in ref. 4. Thus, all notations in (2.1) are explicitly given
in (2.2)–(2.9). Equation (2.1) was first studied in ref. 4 (mainly in the steady
case). Our aim is to investigate this equation in more detail.

The main idea is to pass to the Fourier representation of (2.1).
Following refs. 2 and 3 we introduce the characteristic function

f(k, t)=F
R

3
f(v, t) e−ik · v dv. (2.10)

Then the equation for f(k, t) reads as follows (see ref. 3 for details)

“f

“t
=B(r)`h(t) I(f, f)+LFPf (2.11)

where

I(f, f)=F
S2

dn
4p
[f(k−) f(k+)−f(0) f(k)],

k=
1+e
4
(k−|k| n), k+=k−k−

(2.12)

Equalities (2.1) lead to the following formulas:

r=f(0, t), ru=[iNkf(k, t)]k=0, 3rh=−r |u|2−[Dkf(k, t)]k=0,
(2.13)

whereas the operators defined in (2.9) read

L (1)
FPf=−F |k|2 f, L (2)

FPf=−
1
y
(hb |k|2 f+k ·Nkf), (2.14)

3. MOMENTS OF THE COLLISION INTEGRAL

Our aim in this section is to find a connection between the moments
mi1i2 · · · in of f(v) and the corresponding moments Mi1i2 · · · in of Q(f, f), where

mi1i2 · · · in=F
R

3
f(v) vi1vi2 · · · vin dv, Mi1i2 · · · in=F

R
3
Q(f, f) vi1vi2 · · · vin dv.

(3.1)
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Let f(v) be a given function, g(v)=Q(f, f). The two-parameter trans-
formation

f(v)=Af̃(v−a), A ¥ R+, a ¥ R3, (3.2)

obviously leads to

g(v)=A2g̃(v−a), g̃=Q(f̃, f̃). (3.3)

If A=r, a=u in (3.2) then

F
R

3
f̃(v) dv=1, F

R
3
f̃(v) v dv=0.

Hence it suffices to consider the case

r=F
R

3
f(v) dv=1, ru=F

R
3
f(v) v dv=0. (3.4)

without any loss of generality. Then

f(k, t)=F
R

3
f(v, t) e−ik · v dv=1+C

.

n=2

(−1)n

n!
mi1i2 · · · inki1ki2 · · · kin . (3.5)

Here and below the usual rule of summation from 1 to 3 over repeated
indices is assumed.

Remark. In this section we are not interested in the convergence of
the formal expansion (3.5); the series is simply a convenient tool to evaluate
exactly the moments of the collision integral. The same formulas (see
below) are valid in the case when the function f(v) has only a finite
number of moments and thus the series (3.5) has no meaning at all. Our
approach is merely a modification of methods developed earlier for the
elastic case. (10)

Similarly we obtain:

Y(k, t)=I(f, f)=F
R

3
Q(f, f) e−ik · v dv=C

.

n=2

(−1)n

n!
Mi1i2 · · · inki1ki2 · · · kin .

(3.6)

since Y(0)=0, [NkY(k)]k=0=0. We rewrite (3.5) as

f(k)=1+f̃(k), f̃(k)=O(|k|2). (3.7)
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Then

Y(k)=−Lf+O(|k|4), (3.8)

where

Lf=F
S2

dn
4p
[f(k)−f(k+)−f(k−)]. (3.9)

The linear operator L transforms any homogeneous polynomial
mi1i2 · · · inki1ki2 · · · kin into a homogeneous polynomial of the same order.
Therefore we obtain very simple equalities for moments of order n=2, 3:

Mijkikj=−mijLkikj, Mijlkikjkl=−mijlLkikjkl (3.10)

The operator L is isotropic. Therefore its (tensor) eigenfunctions are tensor
spherical harmonics and we obtain:

L |k|2=l1 |k|2,

L(kikj−
1
3 |k|

2 dik)=l2(kikj−
1
3 |k|

2 dik),

L |k|2 k=l3 |k|2 k,

Lqijl=l4qijl

(3.11)

where

qijl=kikjkl−
|k|2

5
(kidjl+kjdil+kldij), (3.12)

and li (i=1, 2, 3, 4) are the corresponding eigenvalues. All eigenvalues
were already found in ref. 3; one can however easily compute li (i=1, 2,
3, 4) by using just the above equalities. Multiplying (scalarly in the case of
vectors) the equalities in (3.11) by 1, kikj, k, kikjkl, respectively, we obtain:

l1=
1
|k|2

L |k|2,

l2=
3
2
kikj

|k|4
L 1kikj−

1
3
|k|2 dik 2 ,

l3=
k
|k|4
·L |k|2 k,

l4=
5
2
kikjkl

|k|6
Lqijl

(3.13)

Moment Equations for a Granular Material in a Thermal Bath 553



where L is given by Eq. (3.9). Hence we need to evaluate four scalar
integrals (3.13) only. This can be easily done by using the following equalities:

|k− |2=s(1− E)2 |k|2, |k+|2=[1−s(1− E2)] |k|2,

k− ·k=s(1− E) |k|2, k+ ·k=[1−s(1− E)] |k|2,
(3.14)

where E=(1−e)/2 and 0 [ s [ 1 is given by:

s=
1
2
11−k ·n

|k|
2

By using the identity:

F
S2

dn
4p
F 11

2
11−k ·n

|k|
22=F

1

0
F(s) ds.

we can easily evaluate the integrals (3.13) and obtain:

l1=E(1− E), l2=
1
2
(1− E2), l3=

(2+7E)(1− E)
3

, l4=
3
4
(1− E2).

(3.15)

In order to formulate the final result of this section, we denote

g(v)=Q(f, f), (h1, h2)=F
R

3
h1(v) h2(v) dv. (3.16)

where Q(f, f) is given by Eq. (2.2). The lower moments of f(v) and g(v)
are denoted by:

r=(f, 1), ru=(f, v), p=rh=
1
3
(f, |c|2), P=

1
3
(g, |c|2), c=v−u,

qij=1f, cicj−
|c|2

3
dij 2 , Qij=1g, cicj−

|c|2

3
dij 2 ,

qi=(f, ci |c|2), Qi=(f, ci |c|2);

qijk=(f, Cijk), Qijk=(g, Cijk), Cijl=cicjcl−
|c|2

5
(cidjl+cjdil+cldij).
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Theorem 3.1. All moments of the collision integral Q(f, f) of
order n [ 3 are uniquely determined by the moments of f(v) through the
following relations:

(g, 1)=0, (g, v)=0, P=−E(1− E) p, c=v−u,

Qij=−
1
2
(1− E2) rqij, Qi=−

(2+7E)(1− E)
3

rqi, Qijk=−
3
4
(1− E2) rqijk.

(3.17)

provided (|f|, 1+|v|4) <..

Proof. The proof follows from the above considerations since

F
R

3
f(v) h(v−u) dv=r F

R
3
f̃(v) h(v) dv,

where f̃(v) in (3.2) corresponds to A=r, a=u. The equality (3.8) holds if
we assume that (|f|, 1+|v|4) <.. All constant factors in (3.16) are equal to
the corresponding eigenvalues (3.15). Thus theorem 1 is proved.

Thus all lower moments (n [ 3) of Q(f, f) are computed. Similar
computations can be made for moments of order n > 3, but the resulting
formulas are more complicated. On the other hand, Eq. (2.1) admits a wide
class of isotropic solutions f=f(|v|, t); moreover, its steady state solu-
tions are obviously isotropic in velocity space. Then the computation of
moments becomes much easier, as we shall see in the next section.

4. ISOTROPIC SOLUTIONS

If f=f(|v|, t) in (2.1) then the characteristic function (2.11) can be
written as

f=f(x, t), x=
|k|2

2
. (4.1)

Equalities (2.12)–(2.14) lead to

I(f, f)=F
1

0
ds[f((1− E)2 sx) f([1−(1− E2) s] x)−f(0) f(x)],

r=f(0, t), h=−fx(0, t)

L (1)
FPf=−2Fxf, L (2)

FPf=−
2
y
x 1hbf+

“f

“x
2 ,

(4.2)
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where E=(1−e)/2. Without any loss of generality we assume that

r=(f, 1)=f(0, t)=1. (4.3)

Then

f 1 |k|
2

2
, t2=F

R
3
f(|v|, t) e−ik · v dv=1+C

.

n=1

(−1)n

(2n!)
m2n |k|2n, (4.4)

or, equivalently,

f(x, t)=1+C
.

n=1

(−1)n

n!
fnxn,

fn=
2nn!
(2n)!

m2n=
m2n

(2n−1)!!
,

m2n=F
R

3
f(|v|, t) |v|2n dv.

(4.5)

On the other hand,

I(f, f)=C
.

n=1

(−1)n

n!
unxn, un=

M2n

(2n−1)!!
, M2n=F

R
3
Q(f, f) |v|2n dv.

(4.6)

Hence, to compute M2n (the isotropic moments of the collision integral) it
suffices to express un through fn (n=1, 2,...). Substituting (26) into the
integral (23) one can easily obtain (see also, Section 5 of ref. 3):

un=−lnfn+C
n−1

k=1
H(k, n−k) fkfn−k, (4.7)

where

ln=F
1

0
{1−(1− E)2n sn−[1−(1− E2) s]n} (4.8)

and

H(k, n−k)=1n
k
2 (1− E)2(n−k) F

1

0
ds sn−k[1−(1− E)2s]k

n=1, 2,... 1 [ k [ n−1. (4.9)
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The evaluation of the integrals yields

ln=1−
1
n+1
5(1− E)2n+1− E

2(n+1)

1− E2
6 ,

H(k, n−k)=
(1− E)2(n−k)

n+1
C
k

l=0

1n−k+l
l
2 E2l, n=1, 2,... 1 [ k [ n−1.

(4.10)

The result can be formulated as

Theorem 4.1. If f(|v|) \ 0 possesses all moments m2n (4.5), n=0, 1,
2,..., and m0=1, then the corresponding moments M2n (4.6) of the colli-
sion integral are given by the equalities (4.5)–(4.10).

Proof. The proof was already given above. We need only to mention
that the convergence of the Taylor series (4.5), (4.6) plays no role in the
derivation of (4.7)–(4.10). The formulas hold even in the case of a function
f(|v|) with a finite number of moments.

The Fokker–Planck terms (4.2) lead to the following equalities

L (1)
FPf=2F C

.

n=1

(−1)n

n!
[nfn−1] xn,

L (2)
FPf=−

2
y

C
.

n=1

(−1)n

n!
[n(hbfn−1−fn)] xn,

(4.11)

where f(x, t) is given by the series (4.5). Let us consider now the initial
value problem in velocity space

“f
“t
=B(r)`h(t) Q(f, f)+LFPf, f|t=0=f0(v) (4.12)

The substitution

f(v, t)=rf̃(v,t̃), t̃=rB(r) t, r=(f0, 1) (4.13)

yields

“f̃
“t̃
=`h(t̃) Q(f̃, f̃)+L̃FPf̃, f̃|t=0=f̃0(v), (4.14)
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where

L̃FP=
1
Br
LFP, (f̃, 1)=(f̃0, 1)=1 (4.15)

Omitting tildes we note that the problem (4.12) always reduces to the case
r=1, B(r)=1 with the corresponding scaling of (4.15) of the Fokker–
Planck operator. Therefore we consider below just the case r=1, B(r)=1.

If f0=f0(|v|) then the Fourier representation of (4.12) reads as

“f(x, t)
“t

=`h(t) I(f, f)+LFPf, f|t=0=f0(x) (4.16)

where the notations (4.1), (4.2) are used. The solution of this problem can
be constructed in the form of a power series

f(x, t)=C
.

n=0

(−1)n

n!
fn(t) xn, f0=1, f1=h(t), (4.17)

Provided the series:

f0(x)=C
.

n=0

(−1)n

n!
f (0)

n (t) x
n, f (0)

0 =1 (4.18)

has a non-zero radius of convergence. If LFP=L
(1)
FP (4.2) then we obtain:

dh
dt
+l1h3/2=2F, f1=h,

dfn

dt
+lnh1/2fn=h1/2 C

n−1

k=1
H(k, n−k) fkfn−k+2Fnfn−1, n=2,...

(4.19)

where ln and H(k, n−k) are given by Eqs. (4.8) and (4.9). If LFP=L
(2)
FP

(4.2) the corresponding equations read as follows:

dh
dt
+1l1h1/2+

2
y
2 h=2

y
hb, f1=h,

dfn

dt
+1lnh1/2+

2n
y
2 fn=h1/2 C

n−1

k=1
H(k, n−k) fkfn−k+

2n
y
hbfn−1, n=2,...

(4.20)

with the same notation. Equations (4.19) and (4.20) with initial conditions
fn=f

(0)
n , n=1,..., given by the series (4.18) can be obviously solved in a
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recurrent fashion, beginning with f1=h(t). The equation for h(t) reads in
both cases (4.19) and (4.20) as follows:

dh
dt
=A(hg)−A(h), AŒ(h) > 0 if h > 0, (4.21)

where hg is a steady state temperature. Hence h(t) is a monotone function
such that h(0)=h0=f

(0)
1 , h(t)Q hg as tQ., since h=hg is a stable sta-

tionary solution. The equations for fn(t), n \ 2, can be written as

dfn

dt
+an(t) fn=bn(t), n=2,..., an > 0, bn > 0 (4.22)

where an and bn are known if we solve the equations recursively. Therefore

fn(t)=fn(0) e−An(t)+F
t

0
dy bn(y) e−[An(t)−An(y)], n=2,...,

An=F
t

0
ds an(s).

(4.23)

By usual induction arguments we can easily prove the stability property

fn(t)Q f
g
n , tQ.. (4.24)

where fgn=bn(.)/an(.). Similar equations for tensor moments of order
n [ 3 follow from Theorem 3.1. It is clear, however, that all ‘‘anisotropic"
moments of the solutions of (2.1) tend to zero as tQ.. Therefore, in order
to study the asymptotic steady state solution, we may restrict ourselves to
the isotropic case (4.16). Then the steady state solution f(x) is given by the
equation

`h I(f, f)+LFPf=0, f(0)=1, h=−fŒ(0) (4.25)

The solution f(x) reads as

f(x)=C
.

n=0

(−1)n

n!
fnxn, (4.26)

where f0=1, and f1=h is given, in the two cases, by the equalities

l1h
3/2=2F, or 1l1h1/2+

2
y
2 h=2

y
hb, l1=E(1− E), (4.27)
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whereas fn, n \ 2, are given by the recurrence relations (n=2, 3,...)

fn=
1
ln

C
n−1

k=1
H(k, n−k) fkfn−k+2

Fn
lnh

1/2 fn−1, n=2,... (4.28)

or, respectively,

fn=
1

lnh
1/2+2n/y
5h1/2 C

n−1

k=1
H(k, n−k) fkfn−k+

2n
y
hbfn−1
6 . (4.29)

Now we must prove that the series (4.26) converges for |x| < R, R > 0. To
this end we substitute (4.27) into (4.28), (4.29) and obtain

fn=
1
ln

C
n−1

k=1
H(k, n−k) fkfn−k+2

l1nh1/2

ln
fn−1, (4.30)

fn=
h1/2

lnh
1/2+2n/y

C
n−1

k=1
H(k, n−k) fkfn−k+

l1h
1/2+2

y

lnh
1/2+2n/y

nhfn−1. (4.31)

where n \ 2, and f1=h is given by (4.27). Estimates on fn are based on the
inequalities

C
n−1

k=1
H(k, n−k) [ ln,

d
dn
ln > 0, 0 < ln < 1. (4.32)

The first inequality was proved in ref. 3, the second and third inequalities
follow from (4.8). First we consider {fn} defined by formulas (4.31) and
prove that

0 < fn [ An−1hn, A=1+
hb

h
, n=1, 2,... (4.33)

The estimate obviously holds for n=1. Then we use the induction argu-
ment and obtain

0 < fn [ An−2hn 5h1/2 ;n−1
k=1 H(k, n−k)
lnh

1/2+2n/y
+

1+1
2l1h

1/2y

1+lnh1/2(y/2n)
6 (4.34)

therefore

0 < fn [ (An−1hn)
1
A
51+1+1

2
l1h

1/2y6 . (4.35)
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On the other hand, the second equality (4.27) is equivalent to 1+1
2l1h

1/2y

=hb/h. Thus fn < An−1hn, for n \ 2 and the estimate (4.33) is proved.
Hence the series (4.26) with coefficients defined by (4.27) (second equality),
(4.31) converges for all real (and complex) x.

Let us consider now the case (4.30) which formally corresponds to the
limiting case yQ. of (4.31). Assuming that

0 < fn [ n! Bn−1hn, B=1+
l1

l2
, n=1, 2,... (4.36)

we obtain by induction:

0 < fn [ n! Bn−2hn 1
ln
5 C

n−1

k=1

1n
k
2−1

H(k, n−k)+l16 , n=1, 2,..., (4.37)

where

1n
k
2= n!

k! (n−k)!
\ n, 1 [ k [ n−1, n=2,.... (4.38)

Hence

fn [ n! Bn−2hn 11
n
+
l1

ln
2 < n! Bn−1hn, n=2,..., (4.39)

because of inequalities (4.32) and the definition of B, (4.36). Thus the series
(4.26) with coefficients defined by (4.27) (first equality), (4.30) has a non-
zero radius of convergence R \ (Bh)−1. Therefore we have found in each of
the two cases L (i)

FP (4.2), i=1, 2, a unique solution of Eq. (4.2), analytic at
x=0. If LFP=L

(1)
FP (4.2), then the function f(x) for all x > 0 can be

obtained by analytic continuation, since the series (4.26) has a finite radius
of convergence and alternating signs. The result is formulated as

Theorem 4.2. The stationary kinetic equation in the Fourier repre-
sentation

`h B(r) I(f, f)+LFP=0 (4.40)

has for any given density r=f(0) a unique isotropic solution f(|k|2/2)
analytic at k=0. The function f(x) is defined (after reduction to the case
r=1) by Eqs. (4.26)–(4.31) for both cases LFP=L

(1, 2)
FP (4.2).
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To show that this solution f(|k|2/2) corresponds to a ‘‘true’’ positive
solution f(|v|) of Eq. (2.1), we need to prove that f(|k|2/2) is really a
characteristic function (Fourier transform of a probability density). We
consider this question in the next section, where the functions f(|k|2/2) and
f(|v|) are studied in more detail.

5. MORE ABOUT STATIONARY SOLUTIONS

We restrict our considerations to the case LFP=L
(1)
FP (4.2). Then the

stationary kinetic equation for f reads as follows

`h B(r) Q(f, f)+FDf=0 (5.1)

One can choose arbitrarily two parameters r > 0 and u ¥ R3 such that

r=F
R

3
f(v, t) dv, ru=F

R
3
vf(v, t) dv. (5.2)

Then we denote

f(v)=rf̃(v−u), F=F̃rB(r) (5.3)

and reduce the equation to

`h Q(f̃, f̃)+F̃Df̃=0 (5.4)

with additional conditions

F
R

3
f̃(v, t) dv=1, F

R
3
vf̃(v, t) dv=0. (5.5)

The Fourier representation of (5.4)–(5.5) reads as

`h I(f, f)−F|k|2f=0, f(k)=(f, e−ik · v),

f(0)=1 Nkf|k=0=0, Dkf|k=0=−3h.
(5.6)

Here and below tildes are omitted. The isotropic solution f=f(|k|2) of
(5.6) was constructed in Section 4. We have to prove now that there exists
f(v) ¥ C2(R3) such that f(|k|2/2)=(f, e−ik · v).
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First we note that h=(2Fl1)2/3, where l1=E(1− E) in accordance
with (4.27). Therefore Eq. (5.6) can be written as

f(x)=
1

1+l1hx
F

1

0
ds f((1− E)2 sx) f(x−(1− E2) sx), (5.7)

where h=−fŒ(0) is given and f(0)=1. We denote for brevity

l=l1, u(x)=f(x/h), R[f]=F
1

0
ds f((1− E)2 sx) f(x−(1− E2) sx)

(5.8)

Then Eq. (5.7), rewritten in the new notation reads:

u(x)=
1

1+lx
R[u], u(0)=−uŒ(0)=1 (5.9)

An alternative way to construct a solution of (5.9) is to use the iteration
scheme

un+1(x)=
1

1+lx
R[un], n=0, 1,... (5.10)

If u0(x) \ 0 for all x \ 0 and u0(0)=−u −0(0)=1, then the same properties
hold for un(x) > 0, n \ 1. Moreover, if u1(x) \ u0(x) \ 0 (0 [ u1 [ u0), then
un+1(x) \ un(x) \ 0 (0 [ un+1 [ un) for all n \ 1. Taking u0(x)=1 and
u0(x)=e−x, we obtain a monotonically decreasing sequence

u0(x)=1, u1(x)=
1

1+lx
,... (5.11)

and a monotonically increasing sequence

u0(x)=e−x, u1(x)=
e−x

1+lx
e2lx−1
2lx

,... (5.12)

The second sequence converges pointwise to a function 0 [ u(x) [ 1 since
0 [ un(x) [ 1 for all x \ 0 and n=0, 1,... . On the other hand, for any n \ 0
the function un(x) can be expressed as

un(|k|2)=(fn, e−ik · v), (fn, 1)=
1
3(fn, |v|2)=1, (5.13)

where fn=fn(|v|) \ 0. This can be easily proved by induction provided
u1(x) is a characteristic function. Then we note the following: if un(x) is a
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characteristic function, then so is R(un) in Eq. (5.10), since the operator R
is the Fourier transform of the gain term of the collision integral (2.2).
Moreover the function before the operator R in Eq. (5.10) is also a charac-
teristic function and so is un+1(x) as a product of two characteristic func-
tions. Then, from general properties of characteristic functions (see, e.g.,
ref. 5) we conclude that the convergence un(x)Q u(x) is uniform on [0,.)
and there exists a unique f=f(|v|) \ 0 such that

u(|k|2)=(f, e−ik · v), (f, 1)=1
3(f, |v|

2)=1. (5.14)

On the other hand, the following estimate follows from the sequence in
(5.11):

0 [ u(x) [ u2(x)=
1

1+lx
R 5 1

1+lx
6 [ 1. (5.15)

An elementary computation shows that

u2(x) 5 const.x−3 log x, xQ.. (5.16)

Therefore

F
R

3
(1+|k|2) u 1 |k|

2

2
, t2 dk <. (5.17)

and

f(v)=
1

(2p)3
F
R

3
u 1 |k|

2

2
, t2 e ik · v dk ¥ C2(R3). (5.18)

Hence we have constructed a classical solution of (5.6). It is easy to show
that the solution is unique in the class of functions f(v) such that

f(v) \ 0, f(v) ¥ C2(R3), (f, 1+|v|2) <., (5.19)

provided the conditions in (5.5) are fulfilled. The result is formulated as

Theorem 5.1. Equation (5.6) has a unique solution satisfying (5.5),
(5.19). The solution is uniquely defined by its power moments (4.5)

fn=
(f, |v|2n)
(2n−1)!!

, n=1, 2,...; f0=1, (5.20)

given by the recurrence formulas (4.27), (4.28).
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Similar results can be proved for the second case in (2.10),
LFPf=L(2)

FP, which needs, however, more technicalities and is not con-
sidered here. We note only that in this case the solution f(|v|) has the usual
Maxwellian tail (roughly speaking, f 5 exp(−a |v|2) as |v|Q.), as follows
from the estimates for the moments, Eq. (4.33). This is not the case,
however, for a f(|v|) satisfying Eq. (5.1) (as one can guess from the much
weaker estimates (4.36) for the moments).

To study the asymptotics for large speeds (|v|Q.) it is convenient to
use the two-sided Laplace (instead of Fourier) transform. We denote

k 1 |k|
2

2
2=F

R
3
f(|v|) ek · v dv=

4p
|k|

F
.

0
f(r) sinh(|k| r) r dr. (5.21)

and apply this transformation to Eq. (5.4). The result can be easily
obtained from Eq. (5.6) by changing k to ik, so that k(x)=f(−x) satisfies
the equation

k(x)=
1

1−lhx
R[k], k(0)=kŒ(0)=h, x=|k|2/2 \ 0. (5.22)

We note that sinh(|k| r) > |k| r and therefore k(x) \ 1 for all x \ 0. There-
fore

R[k] \ 1, S k(x) \
1

1−lhx
. (5.23)

Hence,

F
.

0
f(r) e |k| rr dr >

|k|
p(2−l1h |k|2)

, (5.24)

and, accordingly, the continuous function f(|v|) exp[`2/(l1h) |v|] \ 0
cannot be integrable. One can assume that

f(|v|) 5 const. |v|p exp 5−= 2
l1h

|v|6 , |v|Q. (5.25)

Then

k(x) 5 const. (1−l1hx)−(p+2), xQ (l1h)−1. (5.26)
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The integral

R[k]=
1
x
F

x

0
dy k((1− E)2y) k(x−(1− E2) y) (5.27)

behaves for xQ (l1h)−1 as

R[k] 5 (l1h) k(0) F
x

0
dy k(x−(1− E2) y)

5 const.k(0)
1

1− E2
1
p+1

(1−l1hx)−(p+1), (5.28)

with the same constant as in (5.26). Noting that k(0)=1, we obtain from
(5.22) the equality

1=
1

(1− E2)(p+1)
. (5.29)

Hence, p=E2(1− E2)−1 in (5.25), and we obtain, at a formal level, the
leading asymptotic term of the distribution function f(|v|) for |v|Q. up
to a constant factor. This specific asymptotics is lost if one uses a conven-
tional expansion

f(|v|) 5 (2ph)−3/2 e−
|v|2

h 51+E2h 1 |v|
2

h
26 (5.30)

for small E. (4) Such an expansion can be easily constructed on the basis of
the Fourier transformed equation (5.6). We denote

f(x)=u(hx)=e−hxy(hx), y(0)=1, yŒ(0)=0,

and obtain the equation for y(x):

y(x)(1+lx)=F
1

0
ds e2lsxy((1− E)2 sx) y(x−(1− E2) sx), (5.31)

where l=E(1− E). Assuming that

y(x)=1+w(x; E),

we obtain after obvious calculations:

w(x; E)=2E2x2+O(E3).

566 Bobylev and Cercignani



This term corresponds to the result of ref. 4. The terms of higher orders in
E can be easily found from Eq. (5.31). Then the inverse Fourier transform
yields the expansion (5.30).
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